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Abstract—The Miller-Rabin primality test is one of the most well-

known methods of primality testing used in modern day cryptography. 

Being wildly used due to its speed and simplicity, extensive effort has 

been made to optimize it, with many focused on finding its best 

primality witnesses. Despite such coverage, not much research wildly 

available have focused on its worst witnesses. In this paper, I use an 

algorithmic approach to present some of the test’s worst witnesses, 

hoping to encourage more discussions in this topic. 
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I.   INTRODUCTION 

For millennia, human’s advancement in science and 

technology cannot be separated from our improved 

understanding of pure and applied mathematics. Specifically 

speaking, the field of number theory has seen tremendous 

development over the course of our history. From the use of 

sexagesimal number system by the Babylonians in the year 3000 

BC [1] to the proof of Fermat’s Last Theorem in 1995 [2], our 

curiosity and hunger of knowledge gives birth to the 

mathematical tools we depend on in our modern society. One of 

such is the field of arithmetic and prime numbers as its 

foundation. 

Prime numbers hold an essential role in today’s world. In 

biology, past publication has shown naturally existing link 

between prime numbers and the life cycle of insects that are part 

of the genus Magicicada as an evolutionary advantage [3]. 

Prime numbers also serve as the basis of modern error detection, 

hash table creation, and cryptography. Due to these, the search 

and verification of prime numbers, both new and existing ones, 

are very important to number theory and cryptography 

especially. 

There are several methods that can be used to verify the 

primality of a number. One of those is the Miller-Rabin 

primality test, first discovered by Gary L. Miller in 1976 [4] and 

modified by Michael O. Rabin in 1980 [5] to become the 

probabilistic version widely used today [6]. Due to its 

popularity, researchers have put enormous efforts to optimize 

this test. Past publications have presented optimal choices of 

witnesses to increase the efficiency of this test method [7] – [9]. 

However, there is little to no publication widely available and 

freely accessible that is focused on discussing the test’s worst 

witnesses, i.e., those who act as a strong liar to the strong 

pseudoprime it is testing.  

In this paper, I shall present an algorithmic way to showcase 

the test’s worst witnesses. Hopefully, this paper will induce 

more discussion and further research in this relatively 

unexplored topic. 

 

II.   THEORETICAL FOUNDATION 

A. Fundamentals of Number Theory 

Number theory is the branch of pure mathematics that is 

devoted to the study of integers, primarily positive integers (also 

known as natural numbers), and the relationship between its 

member [10]. The history of number theory dates back to the 

year 3000 BC in the form of a number system that influenced 

how we interpret time to this day [1]. In modern day, discoveries 

and further understanding of this field lead to its broad 

application in geometry, statistics, biology, physics, computer 

science, and cryptography, to name a few. In the following 

sections, several key ideas in number theory will be presented. 

Divisibility. — Let 𝑎 and 𝑏 be integers, 𝑏 ≠ 0. We say that 𝑎 

divides 𝑏 (or 𝑏 is divisible by 𝑎) if and only if there exists an 

integer 𝑑 such that 

 

𝑎 = 𝑏𝑑. (1) 

 

In mathematical notation, we can express the above statement 

into the following form. 

 

𝑎 | 𝑏. (2) 

 

Let 𝑐 be an integer not divisible by 𝑎. We can denote that 

statement into the following notation. 

 

𝑎 ∤ 𝑐. (3) 

 

The following facts are true for 𝑎, 𝑏, 𝑐 ∈ ℤ [11]. 

1) 𝑎 | 𝑎, 1 | 𝑎, and 𝑎 | 0; 

2) 𝑎 | 1 if and only if 𝑎 = ±1; 

3) 0 | 𝑎 if and only if 𝑎 = 0; 

4) 𝑎 | 𝑏 and 𝑏 | 𝑎 if and only if 𝑎 = ±𝑏; 

5) 𝑎 | 𝑏 if and only if −𝑎 | 𝑏 if and only if 𝑎 |  − 𝑏; 

6) 𝑎 | 𝑏 and 𝑎 | 𝑐 implies 𝑎 | (𝑏 + 𝑐); 

7) 𝑎 | 𝑏 and 𝑏 | 𝑐 implies 𝑎 | 𝑐. 
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Remainders. — We shall expand our previous definition in 

the realm of divisibility. Let 𝑎 and 𝑏 be integers, 𝑏 ≠ 0. Then 

there exist integers 𝑞 and 𝑟 such that 

 

𝑎 = 𝑞𝑏 + 𝑟, 0 ≤ 𝑟 < |𝑏|. (4) 

 

The number 𝑞 and 𝑟 is respectively called the quotient and the 

remainder of 𝑎 when divided by 𝑏 [12]. The remainder 𝑟 is 

uniquely determined by the division of 𝑎 and 𝑏. In addition, the 

remainder 𝑟 is equal to zero if and only if 𝑎 is divisible by 𝑏. 

Greatest common divisor. — Let 𝑎 and 𝑏 be integers, not 

both zero. Then there exists an integer 𝑑 that satisfy 

 

𝑑 | 𝑎, 𝑑 | 𝑏. 
 

Such 𝑑 is called the common divisor of 𝑎 and 𝑏. Moreover, we 

call such 𝑑 the greatest common divisor of 𝑎 and 𝑏 if 𝑑 is 

nonnegative and all other common divisors of 𝑎 and 𝑏 divide 𝑑 

[11]. The greatest common divisor of 𝑎 and 𝑏 can be written into 

the following notation. 

 

gcd(𝑎, 𝑏) . (5) 

 

Finding the gcd of two integers can be done efficiently using the 

Euclidean algorithm, first described by the ancient Greek 

mathematician Euclid in his treatise, The Elements, back in 300 

BC [13]. For two integers 𝑎 and 𝑏, the algorithm can be 

illustrated as follows. 

1) Picking 𝑎 as the larger of the two integers, write 𝑎 in the 

form described in (4). 

2) Choose 𝑏 as the new 𝑎 and 𝑟 as the new 𝑏, then repeat 

the first step. 

3) Proceed until 𝑟 equals to zero, then 𝑟 from the previous 

recursion is our answer. 

The algorithm can be written in Python as the following 

recursive code. 

Bézout’s identity. — Let 𝑎, 𝑏, and 𝑟 be integers and let 𝑑 be 

the gcd of 𝑎 and 𝑏. Then, there exist integers 𝑠 and 𝑡 such that 

the following is satisfied. 

 

𝑎𝑠 + 𝑏𝑡 = 𝑟, 𝑑 | 𝑟. (6) 

 

The statement above is called Bézout’s identity, named after the 

French mathematician, Étienne Bézout, who proved the 

polynomial version of this identity in 1779 [14]. In the 

statement, 𝑠 and 𝑡 are called the Bézout’s coefficient of pairs (a, 

b), which is not unique for that pair. As an example, both the 

following are true. 

 

12 = 24(−1) + 36(1) 

12 = 24(−4) + 36(3) 

B. Modular Arithmetic 

Modular arithmetic is the branch of arithmetic that concerns 

the relationship of divisibility between two integers [14]. 

Modular arithmetic was developed by the German 

mathematician Karl Friedrich Gauss and first presented in his 

book Disquisitiones Arithmeticae in 1801. Other than number 

theory itself, applications of modular arithmetic has been shown 

in the field of computer science, chemistry, and music. In the 

following sections, several key ideas in modular arithmetic will 

be presented. 

Congruences. — Let 𝑚 be a positive integer. If 𝑎 and 𝑏 are 

integers, we say that 𝑎 is congruent to 𝑏 modulo 𝑚 if 

 

𝑚 | (𝑎 − 𝑏). (7) 

 

The integer 𝑚 is called the modulus of the congruence. The 

above statement can be rewritten in the form of (4) as follows. 

 

𝑎 = 𝑘𝑚 + 𝑏. (8) 

 

In mathematical notation, we can express the above statement 

into the following form. 

 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚). (9) 

 

Let 𝑐 be an integer such that 𝑚 ∤ (𝑎 − 𝑐). We can state that 𝑎 is 

incongruent to 𝑐 modulo 𝑚 and denote that statement into the 

following notation. 

 

𝑎 ≢ 𝑐 (𝑚𝑜𝑑 𝑚). (10) 

 

The following properties are true for 𝑎, 𝑏, 𝑐, 𝑑, 𝑘 ∈ ℤ, 𝑚 ∈ ℤ+ 

[14]. 

1) 𝑎 ≡ 𝑎 (𝑚𝑜𝑑 𝑚); 

2) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) implies 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑚); 

3) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) and 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑚) implies 𝑎 ≡
𝑐 (𝑚𝑜𝑑 𝑚); 

4) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) implies 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (𝑚𝑜𝑑 𝑚); 

5) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) implies 𝑎 − 𝑐 ≡ 𝑏 − 𝑐 (𝑚𝑜𝑑 𝑚); 

6) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) implies 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑚); 

7) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) implies 𝑎𝑘 ≡ 𝑏𝑘 (𝑚𝑜𝑑 𝑚); 

8) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑚) implies 𝑎 + 𝑐 ≡
𝑏 + 𝑑 (𝑚𝑜𝑑 𝑚); 

9) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑚) implies 𝑎 − 𝑐 ≡
𝑏 − 𝑑 (𝑚𝑜𝑑 𝑚); 

10) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑚) implies 𝑎𝑐 ≡
𝑏𝑑 (𝑚𝑜𝑑 𝑚); 

Linear congruences. — Let 𝑚 be a positive integer. If 𝑎 and 

𝑏 are integers, a congruence in the form 

 

𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) (11) 

 

with 𝑥 being an unknown integer is called a linear congruence 

in one variable [14]. Let 𝑑 = gcd(𝑎, 𝑚). If 𝑑 ∤ 𝑏, then (11) has 

no solutions. Conversely, if 𝑑 | 𝑏, then (11) has exactly 𝑑 

incongruent solutions, i.e., having a solution set of 𝑑 integers 

which are incongruent with each other in modulo 𝑚. The 

def gcd(a, b): 
    if b == 0: 
        return a 
    else 
        return gcd(b, a % b) 
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solution 𝑥 is given by 

 

𝑥 =
𝑘𝑚 + 𝑏

𝑎
, 𝑘 ∈ ℤ. (12) 

 

Note that if gcd(𝑎, 𝑚) = 1, (11) has a unique solution. 

Modular inverses. — We shall now discuss the linear 

congruence in the special form 

 

𝑎𝑥 ≡ 1 (𝑚𝑜𝑑 𝑚), (13) 

 

where 𝑎 is an integer, 𝑚 is a positive integer, and 𝑥 being an 

unknown integer. As previously stated, there is a unique solution 

to (13) if and only if gcd(𝑎, 𝑚) = 1. Such 𝑥 is then called the 

inverse of 𝑎 modulo 𝑚. When we obtain the value of 𝑥, we can 

use it to solve any linear congruence in the form of (11). This 

can be done by letting �̅� be the inverse of 𝑎 modulo 𝑚. Then, 

we can multiply both sides by �̅� to get 

 

𝑥 ≡ �̅�𝑏 (𝑚𝑜𝑑 𝑚). (14) 

 

C. Prime Numbers 

We have previously stated that for an integer 𝑎, it is true that 

1 | 𝑎 and 𝑎 | 𝑎. We can then conclude that every integer larger 

that 1 has at least two positive divisors, 1 and the number itself. 

We shall then shift our attention to focus on positive numbers 

who only have exactly two divisors. Such numbers are called 

prime numbers. We shall call other integers larger than 1 that is 

not prime as composite numbers. The first well documented 

study of prime numbers was done by Euclid in 300 BC, as 

recorded in his treatise, The Elements [14]. Along with his study, 

Euclid also proved that there exists an infinite number of prime 

numbers. As of today, prime numbers hold an important role in 

algebra, geometry, biology, computer science, and 

cryptography. In the following sections, several key ideas 

involving prime numbers will be presented. 

The Fundamental Theorem of Arithmetic. — The 

fundamental theorem of arithmetic highlights the importance of 

prime numbers being the building block of other positive 

integers. The modern statement of the theorem can be stated as 

follows [14]. 

Every positive integer greater than 1 can 

be uniquely written as a product of prime 

numbers, with the prime factors in the 

product written in nondecreasing order. 

The prime power factorization of a positive integer 𝑎 encodes 

essential information about the number. With the given 

factorization, one can deduce whether a prime number 𝑝 divides 

𝑎 simply by checking the appearance of 𝑝 in the prime 

factorization of 𝑎. 

Prime relativity. — Let 𝑎 and 𝑏 be positive integers. we say 

𝑎 and 𝑏 are relatively prime or coprime if and only if the only 

positive divisor for both integers is 1. Equivalently, 

 

gcd(𝑎, 𝑏) = 1. (15) 

 

It follows that there exist integers 𝑠 and 𝑡 such that the Bézout’s 

identity is fulfilled for integers 𝑎 and 𝑏. Expressing the 

statement in the form presented in (6), 

 

𝑎𝑠 + 𝑏𝑡 = 1. (16) 

 

It also follows that in (13), 𝑥 has a unique solution if 𝑎 and 𝑚 

are relatively prime. 

 

D. Fermat’s Little Theorem 

Fermat’s Little Theorem, sometimes also being referred as 

Fermat’s Theorem, is one the most fundamental discovery in the 

field of number theory. The theorem is first stated by Pierre de 

Fermat, a French mathematician, to a fellow French 

mathematician and friend, Bernard Frénicle de Bessy, in 1640 

[15]. At the time, Fermat did not provide a proof to the theorem. 

The first published proof of this theorem is provided by Euler in 

1736. The theorem plays an important role in deciding whether 

a given number is prime or not, particularly those that are large. 

Fermat’s Little Theorem is widely used in cryptography, 

especially public-key cryptography like RSA. 

The theorem shall be stated as follows. “Let 𝑝 be a prime and 

𝑎 be an integer not divisible by 𝑝. Then 𝑎𝑝−1 − 1 is divisible by 

𝑝.” The theorem can also be written as 

 

𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). (17) 

 

A direct consequence of the theorem is the following. “Let 𝑝 be 

a prime and 𝑎 be an integer. Then 𝑎𝑝 − 𝑎 is divisible by 𝑝.” The 

previous can also be written as the following. 

 

𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝). (18) 

 

It should be noted that the converse of the theorem is not 

guaranteed to be true. If 𝑎 and 𝑝 are relatively prime and satisfy 

(17), 𝑝 need not to be prime. If it is not, then 𝑝 shall be called a 

pseudoprime to base 𝑎. 

 

E. Miller-Rabin Primality Test 

The Miller-Rabin primality test (MRPT) is a probabilistic 

primality test in the form of an algorithm used to determine 

whether a given number is likely prime or not. It is first 

presented as a deterministic primality test by Gary L. Miller in 

1976 [4]. However, the version Miller proposed is dependent on 

the Extended Riemann Hypothesis, a classic mathematical 

conjecture yet to be proven. In 1980, Michael O. Rabin proposed 

an improvement of Miller’s work which removed the previously 

needed dependency in the form of a probabilistic primality test 

[5]. The MRPT is extensively used in the field of cryptography, 

especially in RSA cryptography to generate large prime 

numbers [16], [17]. In the following section, we shall present the 

probabilistic version of the test. 

Probabilistic MRPT. — The probabilistic test proposed by 

Miller and Rabin can be described as follows. 

1) Let 𝑛 be an odd positive integer greater than 2. 

2) Write 𝑛 in the form of (2𝑚 × 𝑑) + 1 where 𝑑 is a 

positive odd integer. 
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3) Pick a random integer 𝑎 between 2 and 𝑛 − 1. 

4) Check whether 𝑎𝑑 ≡ ±1 (𝑚𝑜𝑑 𝑛). 

5) If step 4 is not satisfied, we can conclude that 𝑛 is 

composite. Otherwise, 𝑛 is likely to be prime and step 3 

shall be repeated with a different integer 𝑎. 

6) The process may be repeated until all possible 𝑎 has been 

tested or some number of 𝑎 have been picked such that 

we can conclude 𝑛 is prime within a targeted error bound. 

The MRPT will not report any false negatives, i.e., if 𝑛 is a 

prime, 𝑛 will pass the test. However, the MRPT will sometimes 

report false positives, i.e., 𝑛 may pass the test if 𝑛 is a strong 

pseudoprime to base 𝑎. The error bound of the MRPT is at most 

(
1

4
)

𝑘

, where 𝑘 is the number of iterations being performed. 

 

III.   METHODOLOGY 

We shall determine the worst witnesses of the MPRT by 

figuring out which integer(s) produce the greatest number of 

false positives compared to other witnesses. To accomplish that, 

we shall pick each possible odd composite number 𝑛 ∈
[2, 𝑘], 𝑘 ∈ ℤ+ and test its primality using every possible witness 

𝑎 ∈ (1, 𝑛). Because every 𝑛 is a composite number, 𝑎 should 

not return a positive result. If a composite number 𝑎 claims that 

𝑛 is a prime, we can conclude that it is a false positive. We shall 

then tally the number of false positives for each possible 𝑎. 

I have written a short Python code that can be used to achieve 

our goal. The full source code and a copy of this paper can be 

found in https://github.com/tastytypist/miller-rabin. Below is a 

snippet of the source code used for this paper. 

In the code snippet above, I utilize hash tables 

witness_fail_count and d_values to store the false positive 

tally and the 𝑑 value previously calculated to increase the 

efficiency of the code. The function witness_check shall 

accept integers 𝑎 and 𝑛 as its parameters. The value of 𝑎 can be 

generated using a for-loop that iterates between 2 and 𝑛 

inclusive, and the value of 𝑛 can be fetched from a tuple of 

composite numbers available in the full source code. We shall 

then update the tally hash table if the value pair 𝑎 and 𝑛 satisfy 

step 4 of the probabilistic MRPT, indicating false positive. 

 

IV.   RESULTS 

Here are the worst witnesses of MRPT for 𝑘 = 100, 1000, 
and 10000 respectively. 

 

Table I. The five worst witnesses for 𝑘 = 100 

Witness False positives

38 2

62 2

74 2

18 1

19 1
 

 

Table II. The ten worst witnesses for 𝑘 = 1000 

Witness False positives

64 7

230 7

256 7

30 6

74 6

16 6

81 6

149 6

374 6

373 6
 

 

Table III. The twenty worst witnesses for 𝑘 = 10000 

Witness False positives

256 53

16 36

4096 34

1296 29

64 28

529 23

729 23

1024 23

625 21

900 21

81 20

373 20

1451 20

75 19

300 19

1156 19

100 18

223 18

484 18

676 18
 

 

witness_fail_count = {} 
d_values = {} 
 
def witness_check(a, n): 
    if n in d_values: 
        d = d_values[n] 
    else: 
        d = n – 1 
        while d % 2 == 0: 
            d //= 2 
        d_values[n] = d 
 
    if (a ** d) % n == 1 or (a ** d) % n == n - 1: 
        if a in witness_fail_count: 
            witness_fail_count[a] += 1 
        else: 
            witness_fail_count[a] = 1 

https://github.com/tastytypist/miller-rabin
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The full breakdown of the result is also available at the 

GitHub repository of this paper, accessible via the following 

link: https://github.com/tastytypist/miller-rabin. 

 

V.   DISCUSSION 

As we can see in Table I, Table II, and Table III, for 𝑘 = 100, 

the five worst witnesses 𝑎 are 38, 62, 74, 18, and 19. For 𝑘 =
1000, the ten worst witnesses 𝑎 are 64, 230, 256, 30, 74, 16, 

81, 149, 374, and 373. For 𝑘 = 10000, the twenty worst 

witnesses 𝑎 are 256, 16, 4096, 1296, 64, 529, 729, 1024, 

625, 900, 81, 373, 1451, 75, 300, 1156, 254, 100, 223, and 

484. 

Looking at the results, we may notice some patterns that 

arises when looking at each witness. Some witnesses that have 

a tendency of returning false positives can be expressed in the 

form of even powers of prime as follows. 

 

64 = 26 
256 = 28 

16 = 24 
81 = 34 

4096 = 212 
529 = 232 
729 = 36 

1024 = 210 
625 = 54 

 

Looking further, some “trigger-happy” witnesses can be 

expressed as the multiplication of two even powers of prime as 

follows. 

 

1296 = 24 × 34 
1156 = 22 × 172 

100 = 22 × 52 
484 = 22 × 112 
676 = 22 × 132 
900 = 22 × 32 × 52 

 

Unfortunately, I am not knowledgeable enough in this topic to 

make an educated reasoning and conclusion as of why such 

interesting patterns emerge. Furthermore, stating a wild guess in 

this paper simply seems reckless and unwise. I believe it is in 

my best interest to refrain from doing just that. 

 

VI.   CONCLUSION 

The lack of existing publication discussing the worst 

witnesses of the Miller-Rabin primality test motivates me to 

write this paper to do exactly just that. In this paper, I have 

presented the worst witnesses of the Miller-Rabin primality test. 

I have also argued that there might exist a pattern for the 

witnesses who raise more false positives compared to other 

witnesses. Unfortunately, I am not well versed enough in this 

topic to give any good explanation as of why that is the case. 

Hopefully, this paper may spark more discussion regarding this 

topic and potentially help the discovery of future knowledge in 

the realm of number theory. 

 

As a suggestion for future researchers who are interested in 

this topic regarding worst witnesses, it may be advisable to 

present the result in the form of accuracy percentage, noting that 

smaller values of 𝑎 is being tested more often compared to a 

significantly larger 𝑎. Although this might not change the 

conclusion significantly at first glance, such change in method 

may result in a better understanding of the data. 
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